MISG 2016 Graduate Workshop

e-vota

J. W. Sanders

AIMS South Africa & SUN

The problem

Election by vote: from clubs to nations.

Many *voting protocols* are in common use and their features are well known (and perhaps surprising at first).

However all voting *systems* share important properties, including:

- voter authentication
- confidentiality of vote
- accountability of result.

Can we design a distributed voting system?

Characteristics of this problem

What characterises a typical MISG problem?

How this problem is similar; and different.

What is required: a design; its correctness and efficiency.

What is not required: a *program*; testing it in various cases.

The maths is *pure*, *discrete* and perhaps unfamiliar.

Abstraction. Design space. Nondeterminism.

Specification

Assume the voting protocol is given by a 'black box' procedure. Concentrate on the rest of the system.

```
Our system is specified by its
```

functionality

(reflects the voting protocol)

extra features

(authentication, confidentiality, anonymity, + security?, + robustness?)

Design techniques

• Describing a distributed design.

Modularity.

Information flow by shared variables or message passing.

• Reasoning about distributed behaviour.

Each module must be autonomous.

Invariant properties.

• Public key encryption.

Secure communication. Digital signatures.

• Mathematical notation.

Z formalism.

Example: the voting protocol

```
Voters
Candidates
```

```
Rankings := perms(Candidates)
```

 $Votes := Voters \rightarrow Rankings$

 $VProtocol := Votes \rightarrow Rankings$

Concerns

- 1. Modelling: how to abstract (what is 'observable'?).
- 2. Does the distributed e-format offer *new* possibilities for a voting system?
- 3. Correctness?
- 4. Efficiency?

References

- Survey on electronic voting schemes, Laure Fouard, Mathilde Duclos and Pascal Lafourcade. 65 pages.
- Design and analysis of a practical e-voting protocol, Marián Novotný. 14 pages.
- Analysis of an Electronic Voting System, Tadayoshi Kohno, Adam Stubblefield, Aviel Rubin and Dan Wallach. 23 pages.